Rules for assigning Oxidation Numbers

- (1) always zero in the pure element, eg, H-H, Cl-Cl, Na
- (2) equal to the charge on a monatomic ion $Na^+ + 1$ $Ba^{2+} + 2$ $Cl^- 1$ etc.
- (3) in a neutral molecule, the total must = 0 H—Br (+1) + (-1) = 0 PBr₅ P(+5) + 5Br(-1) = 0
- (4) in a complex ion, the total must = charge on ion NH_4^+ (-3) + 4(+1) = +1 BF_4^- (+3) + 4(-1) = -1 CIO_4^- (+7) + 4(-2) = -1
- (5) priority rules based on the electronegativity scale are used in assigning O.N.'s in a compound
 - (a) fluorine is always -1
 - (b) group I metals (Na, K, etc.) always +1
 - (c) group II metals (Ca, Mg, etc.) always +2
 - (d) H is always +1 except when combined with a metal to form a hydride e.g LiH is [Li⁺] [H⁻] H is -1
 - (e) O is always -2 except when combined with fluorine e.g. OF₂, where O is +2 (F is more electronegative and -1) OR in peroxides, which contain the O-O bond e.g H—O—O—H hydrogen peroxide, where O is -1. Na₂O₂ is 2 Na⁺ [O O]²⁻ O is -1
 - (f) other halogens (Group VII) are always –1, except when combined with fluorine or oxygen

 BrF₅ Br is + Cl₂O Cl is +
- (6) to assign <u>oxidation numbers to all carbon atoms</u> in organic molecules, two further rules must be added to those given above:
 - i) one carbon atom bonded to another is ignored in calculations of oxidation numbers.
 - ii) when a C atom is bonded to a heteroatom such as O or N, the oxidation number assigned to O or N is divided equally among each of the atoms bonded to them. Thus the C atom in CH₃OH has an oxidation number of -2 because each H is +1 and the O contributes a -1 portion of its -2 oxidation number to each of the attached H and C atoms.